
  

  

Abstract— From exploring planets to cleaning homes, the 

reach and versatility of robotics is vast. The integration of 

actuation, sensing and control makes robotics systems 

powerful, but complicates their simulation. This paper 

introduces a versatile, scalable, yet powerful general-purpose 

robot simulation framework called V-REP. 

The paper discusses the utility of a portable and flexible 

simulation framework that allows for direct incorporation of 

various control techniques. This renders simulations and 

simulation models more accessible to a general-public, by 

reducing the simulation model deployment complexity. It also 

increases productivity by offering built-in and ready-to-use 

functionalities, as well as a multitude of programming 

approaches. 

This allows for a multitude of applications including rapid 

algorithm development, system verification, rapid prototyping, 

and deployment for cases such as safety/remote monitoring, 

training and education, hardware control, and factory 

automation simulation. 

 

I. INTRODUCTION 

The exponential increase in processing power of 
computers (not to mention 3D graphics hardware) along with 
the plethora of open software and hardware standards has 
drastically changed the landscape in the field of (3D) robotics 
simulation. Not only has this enabled more complexity on the 
desktop, but conversely it has provided the ability to run 
simulations (in real-time) with hardware in-the-loop, or to 
have mobile/embedded systems controlled from a simulation 
framework. 

 While it is possible to assemble a simulator from the 
various kinematics, physics and graphics libraries, the 
architecture and control methodology are crucial to 
determining how these elements interact and thus the overall 
performance and accuracy of the system. A robust systems 
approach advocates for a versatile, scalable and fine-grained 
simulation strategy.  

Practically, a general-purpose robot simulator has to 
provide multitude tools and functionalities simultaneously, 
while abstracting the underlying robotic systems and their 
complexity since system specificities cannot be foreseen. 
Additionally, one wants a flexible controller approach that 
can be portable and easily coded (and maintained), 
generalizable to various models, and scalable (i.e. simulation 
entities should handle multiple models, controllers or any 
other functionality).  
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There are currently several robot simulation platforms 
available, for instance Open HRP [1], Gazebo [2] or Webots 
[3]. While some offer competing functionality, many fail in 
offering a large and complementary palette of programming 
techniques, and their simulation models and controllers are 
only partially portable: models, controllers and other 
functionality are clearly distinct, and thus need separate 
handling. For example, controller recompilation on a 
different hardware or platform is often necessary, or the 
simulation model and controller need to be carefully matched 
since they represent at least two distinct files, and when 
scaling is supported, it is done via relatively obscure hard-
wired mechanisms.  

The Virtual Robot Experimentation Platform [4] (main 
user interface shown in Fig. 1) – or simply V-REP simulator 
– is the result of an effort trying to council all requirements 
into a versatile and scalable simulation framework. Next to 
offering the traditional approaches also found in other 
simulators, V-REP adds several additional approaches. 
Section II of this paper describes V-REP’s control 
architecture, in which the various possible controller types 
are explained, in particular embedded scripts. That is, they 
can be an integral part of a simulation model, thus extremely 
portable and scalable. Section III discusses the overall offered 
simulation functionality, and its integration into simulation 
models, also for the sake of portability. Finally, section IV 
examines three practical V-REP simulation models and their 
implementation, as an illustration of this paper’s content. 

 

 

Figure 1.  An example V-REP simulation scene showing the diversity of 

robot types that may be simulated simultaneously 

II. SIMULATION CONTROLLERS 

If one wants to build complex simulation scenarios, then 

there is almost no escape from a distributed control 

framework. It simplifies the task by partitioning control 

entities, it speeds-up simulation by distributing the CPU load 

over several cores or several machines, and it allows a 
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simulation model be controlled by native code execution. 

There are however simulation requirements that should not 

be forgotten in pursuit of that goal. 

One of the most important and often neglected aspect is 

the flexibility, portability and scalability of the simulation 

model: how easy is it to adjust its control code(s)? How 

many files have to be distributed in order to run the same 

simulation model on another machine? Will it require 

recompilation on other platforms? How many versions of the 

same controller are in circulation? Can various versions 

operate side-by-side? Can a simulation model easily be 

instantiated several times, without losing functionality? 

Other simulation control requirements are linked to the 

simulation loop. Some elements, especially the low-level 

controls such as real-time motion level controllers, require 

synchronization with the simulation loop. (i.e. executed at 

the same moment at each simulation pass).  

The importance of providing synchronous/asynchronous, 

external/embedded, native/non-native distributed control 

techniques in robotics simulations is discussed hereafter. 

A. Overview of Common Techniques 

The execution of the control code of a simulation or a 
simulation model is handled using the following three 
techniques: 

• The control code is executed on another machine. 
This could represent a distinct machine or a robot, 
connected to the simulator machine via a specific 
network (e.g. socket, serial port, etc.). The main 
advantage of this approach is the originality of the 
controller (the control code can be native and running 
on the original hardware). Another advantage is the 
reduced computing load on the simulation machine. 
On the other hand, this approach imposes serious 
limitations in regards to synchronization with the 
simulation loop, and the communication delay/lag 
dictated by the network. 

• The control code is executed on the same machine, 
but in another process (or another thread) than 
the simulation loop. Here also, we can benefit from 
a reduced, or rather balanced load on the CPU cores, 
but this comes accompanied with a lack of 
synchronization with the simulation loop. And most 
of the time, it comes in pair with a communication 
lag or thread switching delay (many resources 
require locking before access, or some algorithms 
aren't reentrant). This control technique is often 
implemented via external executables or plug-ins 
loaded by the simulator. 

• The control code is executed on the same machine 
and in the same thread as the simulation loop. The 
main advantage of this approach is the inherent 
synchronization with the simulation loop, and the 
absence of any execution, communication or thread 
switching lag or delay. This however is only made 
possible with an increased load on the simulation 
loop CPU core. This control technique is often 
implemented via plug-ins loaded by the simulator. 

The most common implementations of the above 
techniques (i.e., using external executables or plug-ins) have 
as a direct consequence poor portability and poor scaling of 
simulation models: indeed, since the control code is not 
attached to its respective simulation model, it will have to be 
distributed/compiled/installed separately. This increases 
compatibility problems across platforms, as well as 
conflict/dependency issues with other libraries. Flexibility is 
also reduced, since one would have to recompile and reload 
an executable/plug-in for each small code modification. 
Model duplication, as in a multi-robot simulation scenario, 
will have to be supported via hard-wired mechanisms that 
launch new control instances for each simulation model 
instance. 

B. V-REP Implementation 

V-REP allows the user to choose among various 
programming techniques simultaneously (Table 1) and even 
symbiotically (Fig. 2): 

• Embedded scripts. This represents the most 
powerful and distinctive feature of V-REP. The main 
simulation loop is a simple Lua [5] script (called 
“main script”), part of a given simulation scene, that 
handles general functionality (e.g. it will call distinct 
functions to handle kinematics or dynamics, for 
instance). The main script is also in charge of calling 
child scripts in a cascaded way (with respect to the 
scene hierarchy). A child script, unlike the main 
script, is attached to a specific object in the 
simulation scene, and handles a particular part of the 
simulation. It is an integral part of its scene object, 
and will be duplicated and serialized, together with it. 
As such, it represents a perfectly portable and 
scalable control element: there is one single file 
containing the model definition together with its 
control or functionality, there is no compatibility 
issue across platforms, no need for explicit 
compilation,  no conflict among several versions of 
the same model, model instantiation is implicit, etc. 
Child scripts can be executed in a threaded and non-
threaded fashion. The threaded version of child 
scripts still keeps the advantages of the technique 
described in point 3 of section II, A: indeed, V-
REP’s thread scheduler handles threads in a way that 
makes them behave and appear as coroutines, which 
allow to precisely control the time at which the 
thread execution is switched back and forth, 
effectively allowing for an excellent synchronization 
with the main script or other child scripts. 
Additionally, each thread can programmatically 
request being set into a free-running mode (i.e. 
allowing them to temporarily behave as real threads). 
Embedded scripts can also be seen as a “glue 
component”, that binds the various supported 
programming techniques around V-REP: child 
scripts can register ROS publishers/subscribers, they 
can open and handle communication lines (e.g. 
socket or serial port), launch executables, 
load/unload plug-ins, or start remote API server 
services (see point 4 hereafter). Embedded scripts 
include also callback scripts, used as low-level 



  

customized joint controllers for instance. The 
functionality of embedded scripts can be extended by 
the user via two mechanisms: with Lua extension 
libraries, or with custom Lua functions registered 
through a plug-in. 

• Add-ons. In a similar way as embedded scripts, add-
on are supported in V-REP via Lua scripts. They can 
be used as stand-alone functions (convenient for 
writing importers/exporters), or as regularly executed 
code (convenient as a lightweight simulator 
customization method). 

• Plug-ins. Plug-ins are used in V-REP as a convenient 
simulator customization tool. They can register 
custom Lua commands, allowing the execution of 
fast callback functions from within an embedded 
script. They can also extend the functionality of a 
particular simulation model or object. Often they also 
implement specific importers/exporters, or offer an 
interface to a specific hardware. The remote API 
interface as well as the ROS interface (see next 
items) are implemented via plug-ins. 

 

TABLE I.  COMPARISON OF THE FIVE PROGRAMMING TECHNIQUES 

SUPPORTED IN V-REP 

 

• Remote API clients. The remote API interface in V-
REP allows interacting with V-REP or a simulation, 
from an external entity via socket communication. It 
is composed by remote API server services and 
remote API clients. The client side can be embedded 
as a small footprint code (C/C++, Python, Java, 
Matlab & Urbi) in virtually any hardware including 
real robots, and allows remote function calling, as 
well as fast data streaming back and forth. On the 
client side, functions are called almost as regular 

functions, with two exceptions however: remote API 
functions accept an additional argument which is the 
operation mode, and return a same error code. The 
operation mode allows calling functions as blocking 
(will wait until the server replies), or non-blocking 
(will read streamed commands from a buffer, or 
start/stop a streaming service on the server side). The 
ease of use of the remote API, its availability on all 
platforms, and its small footprint, makes it an 
interesting alternative to the ROS interface (see next 
item). 

• ROS [6] nodes. V-REP implements a ROS node 
with a plug-in which allows ROS to call V-REP 
commands via ROS services, or stream data via ROS 
publishers/subscribers. Publishers/subscribers can be 
enabled with a service call, and also directly enabled 
from within V-REP, via an embedded script 
command. 

 

 

Figure 2.  V-REP control architecture. Greyed items are control entities. 
(1) C/C++ API calls, (2) cascaded child script execution, (3) Lua API calls, 

(4) custom Lua API callbacks, (5) V-REP event callbacks, (6) remote API 

function calls, (7) ROS transit, (8) custom communication (socket, serial, 

pipes, etc.) 

III. SIMULATION FUNCTIONALITY 

V-REP is designed around a versatile architecture. There 
is no main or central functionality in V-REP. Rather, V-REP 
possesses various relatively independent functionalities, that 
can be enabled or disabled as required, also on a model-base. 

Imagine a simulation scenario where an industrial robot 
has to pick-up boxes and move them to another location; V-
REP computes the dynamics for grasping and holding the 
boxes and performs a kinematic simulation for the other parts 
of the cycle when dynamic effects are negligible. This 
approach makes it possible to calculate the industrial robot's 



  

movement quickly and precisely, which would not be the 
case had it been simulated entirely using complex dynamics 
libraries. This type of hybrid simulation is justified in this 
situation, if the robot is stiff and fixed and not otherwise 
influenced by its environment. 

In addition to adaptively enabling various of its 
functionalities in a selective manner, V-REP can also use 
them in a symbiotic manner, having one cooperate with 
another.  In the case of a humanoid robot, for example, V-
REP can handle leg movements by (a) first calculating 
inverse kinematics for each leg (i.e., from a desired foot 
position and orientation, all leg joint positions are calculated); 
and then (b) assigning the calculated joint positions to be 
used as target joint positions by the dynamics module. This 
allows specifying the humanoid motion in a very versatile 
way, since each foot would simply have to be assigned to 
follow a 6-dimensional path: the rest of calculations are 
automatically taken care of. 

Functionality is related to specific scene objects, or to 
specific calculation modules, both of them are described 
hereafter. 

A. Scene Objects 

A V-REP simulation scene, or simulation model contains 
several scene objects or elemental objects that are assembled 
in a tree-like hierarchy. The following scene objects are 
supported in V-REP: 

• Joints: joints are elements that link two or more 
scene objects together with one to three degrees of 
freedom (prismatic, revolute, screw-like, or 
spherical). They can operate in various modes (e.g. 
force/torque mode, inverse kinematics mode, etc.) 

• Shapes: shapes are triangular meshes, used for rigid 
body simulation and visualization. They can be 
optimized for fast dynamic collision response 
calculation, as a grouping of primitive or convex 
shapes. Other scene objects or calculation modules 
heavily rely on shapes for their calculations 
(proximity sensors, the dynamics module, or the 
mesh-mesh distance calculation module for 
example). 

• Proximity sensors (Fig. 3): they perform an exact 
minimum distance calculation to the part of a shape 
contained in a configurable detection volume [7], as 
opposed to simply performing detection based on 
rays. This results in a more continuous operation and 
thus allows for more realistic simulation. 

• Vision sensors: vision sensors allow to extract 
complex image information from a simulation scene 
(colors, object sizes, depth maps, etc.). A built-in 
filtering and image processing function enables the 
composition of blocks of filter elements. Vision 
sensors make use of hardware acceleration for the 
raw image acquisition (OpenGL). 

• Force sensors: they represent rigid links between 
shapes, that can record applied forces and torques, 
and that can conditionally break apart when a given 
threshold is overshot. 

• Graphs: graphs can record a large variety of 
predefined or custom data streams. Data streams can 
then be displayed directly (time graph of a given data 
type), or combined with each other to display X/Y 
graphs, or 3D curves. 

• Cameras: they allow scene visualization when 
associated with a viewport. 

• Lights: lights illuminate a scene or individual scene 
objects, and directly influence cameras or vision 
sensors. 

• Paths: they allow complex movement definitions in 
space (succession of freely combinable translations, 
rotations and/or pauses), and are used for guiding a 
welding robot's torch along a predefined trajectory, 
or for allowing conveyor belt movements for 
example. 

• Dummies: a dummy is a reference frame, that can be 
used for various tasks, and is mainly used in 
conjunction with other scene objects, and as such, 
can be seen as a “helper.” 

• Mills: they represent customizable convex volumes 
that can be used to simulate surface cutting 
operations on shapes (e.g., milling, laser cutting, 
etc.). 

  

Figure 3.  Proximity sensor in V-REP 

A. Calculation Modules 

Scene objects are rarely used on their own, they rather 
operate on (or in conjunction with) other scene objects (e.g. a 
proximity sensor will detect shapes). In addition, V-REP 
offers several calculation modules that can directly operate 
on one or several scene objects. Following are the main 
calculation modules: 

• Kinematics module: allows kinematics calculations 
(forward/inverse) for any type of mechanism 
(branched, closed, redundant, containing nested 
loops, etc.). The module is based on calculation of 
the damped least squares pseudoinverse [8]. It 
supports conditional, damped/undamped, and 
weighted resolution. 

• Dynamics module: allows handling rigid body 
dynamics calculation and interaction (collision 



  

response, grasping, etc.) via the Bullet Physics 
Library [9] and the Open Dynamics Engine [10]. 
Dynamics-based simulations still being in its infant 
shoes and often based on approximations, it is 
important to not only rely on one single physics 
engine, in order to validate results. At the time of 
writing, a third, high fidelity physics support via 
Vortex Dynamics [11] is in preparation. 

• Collision detection module: allows fast interference 
checking between any shape or collection of shapes. 
This module is fully independent from the collision 
response calculation algorithm of the dynamics 
module. It uses data structures based on a binary tree 
of oriented bounding boxes [12] for accelerations. 
Additional optimization is achieved with a temporal 
coherency caching technique. 

• Mesh-mesh distance calculation module: allows 
fast minimum distance calculations between any 
shape (convex, concave, open, closed, etc.) or 
collection of shapes. The module uses the same data 
structures as the collision detection module. 
Additional optimization is also achieved with a 
temporal coherency caching technique. 

• Path/motion planning module: handles holonomic 
path planning tasks and non-holonomic path 
planning tasks (for car-like vehicles) via an approach 
derived from the Rapidly-exploring Random Tree 
(RRT) algorithm [13]. Path planning tasks of 
kinematic chains are also supported.  

 

For versatility the above modules are implemented in a 
general way, without making any assumptions on the 
underlying simulation scenes or models. The purpose of 
having them integrated in V-REP, instead of relying on 
external libraries is somewhat similar to the purpose of 
having embedded scripts, as described in section II, B: a vast 
majority of simulations or simulation models do not require 
any specific or high-end tool. They instead require a good set 
of basic tools. If those are integrated to the simulator, and 
their task definitions directly attached to simulation models, 
then models become extremely portable: distribution of a 
simulation model to a different machine or platform is done 
via a single model file; there is no need to distribute, 
recompile, install or reload a plug-in. In a similar way, this 
makes models very scalable too: duplicated models are 
automatically functional, without the need to modify any 
source code. The duplication process can even happen during 
simulation. 

The traditional approach of extending functionality via a 
plug-in, in order to support a specific simulation model is of 
course also supported in V-REP. 

IV. A CASE STUDY 

Sometimes there is no escape from using a controller that 
is separate from its simulation entity, typically when dealing 
with a robot’s main controller, that can take very complex 
proportions. Or when the controller needs to run natively. 
But other times, is it really necessary to implement a plug-in 
for each small sensor, new feature or small function? 

Following three examples illustrate nicely the versatility and 
portability of simulation models offered in V-REP. 

A. Simulation Model of a Laser Scanner 

Fig. 4 shows a laser scanner simulation model in V-REP. 
The model is composed by a body or casing, a revolute joint, 
and a ray-type proximity sensor mounted on the joint. A non-
threaded child script is attached to the sensor casing, and is in 
charge to move the joint by a given angle, read the proximity 
sensor, generate a line primitive in the scene (and an 
auxiliary point primitive where a detection occurred), then 
move to the next angular position. Since the child script runs 
non-threaded, it will have to process as many joint angle 
positions as the joint would have moved within one 
simulation step. 

The model can be dragged and dropped into a scene, and 
will be immediately operational during simulation. The 
whole model fits into a single file directly usable on other 
platforms too, and compatible with current as well as future 
V-REP versions. The model can be duplicated as often as 
required, and its control code modified at will. 

 

Figure 4.  Laser scanner and hexapod model in V-REP 

In a similar way, other such models can easily be created, 
be it a drawing pen, a paint nozzle, a gripper, a blob detection 
camera, or a whole robot.  

B. Simulation Model of a Parallel Manipulator 

Fig. 5 shows a parallel manipulator model controlled in 
forward kinematics from an external application that 
connects via the remote API to it. In order to correctly handle 
all the loop closure constraints, the model is handled via V-
REP’s kinematics module. Since all related kinematics task 
definitions are attached to the model, this model is self-
contained too, and immediately duplicable and operational on 
other platforms too. Even physical scaling of the model, 
which is another feature that V-REP supports, will 
automatically adjust all kinematic tasks (among others), and 
keep kinematic resolution consistent - without the need to 
adjust any code. 

C. Simulation Model of a Smart Human 

Fig. 6 illustrates a simulation model of a human, 
performing path planning tasks between its current position 
and a desired target position. While the path planning task in 



  

itself is computed by V-REP’s path planning module, a child 
script attached to the model will trigger path planning 
calculations, actuate legs and arms, and correctly move the 
model along the calculated path. Here also, the model is fully 
self-contained and fully portable. 

V. CONCLUSION 

V-REP is introduced as a versatile and scalable simulation 

framework. By offering a multitude of different 

programming techniques for its controllers, and by allowing 

to embed controllers and functionalities in simulation 

models, it eases the programmers task and reduces the 

deployment complexity for the users. 

 

 

 

Figure 5.  Delta Arm manipulator model in V-REP 

 

Figure 6.  Path planning human model in V-REP 

 

Currently V-REP has grown to a robust and widely used 

robot simulator and controller, present in the academic as 

well as industrial field. It performs tasks ranging from 

system verification, algorithm optimization, simulation of 

complex assembly chains in factory automation applications, 

to robot task planner and controller. 

ACKNOWLEDGMENT 

Eric Rohmer thanks the Sao Paulo Research Foundation 

FAPESP for its financial support. 

REFERENCES 

[1] F. Kanehiro, H. Hirukawa, and S. Kajita, “Open HRP: Open 

Architecture Humanoid Robotics Platform,” Int. J. of Robotics 

Research, vol 23, pp. 155-165, 2004 
[2] N. Koenig, and A. Howard, “Design and use paradigms for Gazebo, 

an open-source multi-robot simulator,” in Proc of Int. Conf. on 

Intelligent Robots and Systems, pp. 2149-2154, Sendai, Japan, Sept.-
Oct. 2004 

[3] O. Michel, “Webots: professional mobile robot simulation,” Int. J. 

Adv. Robot. Syst., vol. 1, pp. 39-42, 2004 
[4] V-REP simulator : http://www.coppeliarobotics.com 

[5] Lua: http://www.lua.org 

[6] M. Quigley, B. Gerkeyy, K. Conleyy, J. Fausty, T. Footey, J. Leibsz, 
E. Bergery, R. Wheelery, and A. Ng, “ROS: an open-source Robot 

Operating System,” in Proc of IEEE Int. Conf. of Robotics and 

Automation, Kobe, Japan, May 2009 
[7] M. Freese, F. Ozaki, and N. Matsuhira, “Collision Detection, Distance 

Calculation and Proximity Sensor Simulation using Oriented 

Bounding Box Trees,” 4th International Conference on Advanced 
Mechatronics, pp. 13-18, Asahikawa, Japan, Oct. 2004 

[8] C. W. Wampler, “Manipulator Inverse Kinematic solutions based on 

Vector Formulations and Damped Least Squares Methods,” in IEEE 
Trans. Syst., Man, Cybern., vol. 16, pp. 93-101, 1986 

[9] Bullet physics library : http://www.bulletphysics.org 

[10] Open dynamics engine: http://www.ode.org  
[11] Vortex Dynamics: http://www.vxsim.com 

[12] S. Gottschalk, M. C. Lin, and D. Manocha, “OBB-tree : a hierarchical 

structure for rapid interference detection,” ACM SIGGRAPH, pp. 171-
180, New Orleans, USA, Oct. 1996 

[13] J. J. Kuffner Jr., “RRT-Connect: an Efficient Approach to Single-

Query Path Planning,” in Proc of IEEE Int. Conf. of Robotics and 
Automation, San Fransisco, USA, Apr. 2000 

 

 

http://www.ode.org/
http://www.vxsim.com/

