

Abstract— From exploring planets to cleaning homes, the

reach and versatility of robotics is vast. The integration of

actuation, sensing and control makes robotics systems

powerful, but complicates their simulation. This paper

introduces a versatile, scalable, yet powerful general-purpose

robot simulation framework called V-REP.

The paper discusses the utility of a portable and flexible

simulation framework that allows for direct incorporation of

various control techniques. This renders simulations and

simulation models more accessible to a general-public, by

reducing the simulation model deployment complexity. It also

increases productivity by offering built-in and ready-to-use

functionalities, as well as a multitude of programming

approaches.

This allows for a multitude of applications including rapid

algorithm development, system verification, rapid prototyping,

and deployment for cases such as safety/remote monitoring,

training and education, hardware control, and factory

automation simulation.

I. INTRODUCTION

The exponential increase in processing power of
computers (not to mention 3D graphics hardware) along with
the plethora of open software and hardware standards has
drastically changed the landscape in the field of (3D) robotics
simulation. Not only has this enabled more complexity on the
desktop, but conversely it has provided the ability to run
simulations (in real-time) with hardware in-the-loop, or to
have mobile/embedded systems controlled from a simulation
framework.

 While it is possible to assemble a simulator from the
various kinematics, physics and graphics libraries, the
architecture and control methodology are crucial to
determining how these elements interact and thus the overall
performance and accuracy of the system. A robust systems
approach advocates for a versatile, scalable and fine-grained
simulation strategy.

Practically, a general-purpose robot simulator has to
provide multitude tools and functionalities simultaneously,
while abstracting the underlying robotic systems and their
complexity since system specificities cannot be foreseen.
Additionally, one wants a flexible controller approach that
can be portable and easily coded (and maintained),
generalizable to various models, and scalable (i.e. simulation
entities should handle multiple models, controllers or any
other functionality).

1 Corresponding author: marc@coppeliarobotics.com
Eric Rohmer is a lecturer at the State University of Campinas, Brasil

Surya Singh is a lecturer at the University of Queensland, Australia

Marc Freese is CEO of Coppelia Robotics, Switzerland.

There are currently several robot simulation platforms
available, for instance Open HRP [1], Gazebo [2] or Webots
[3]. While some offer competing functionality, many fail in
offering a large and complementary palette of programming
techniques, and their simulation models and controllers are
only partially portable: models, controllers and other
functionality are clearly distinct, and thus need separate
handling. For example, controller recompilation on a
different hardware or platform is often necessary, or the
simulation model and controller need to be carefully matched
since they represent at least two distinct files, and when
scaling is supported, it is done via relatively obscure hard-
wired mechanisms.

The Virtual Robot Experimentation Platform [4] (main
user interface shown in Fig. 1) – or simply V-REP simulator
– is the result of an effort trying to council all requirements
into a versatile and scalable simulation framework. Next to
offering the traditional approaches also found in other
simulators, V-REP adds several additional approaches.
Section II of this paper describes V-REP’s control
architecture, in which the various possible controller types
are explained, in particular embedded scripts. That is, they
can be an integral part of a simulation model, thus extremely
portable and scalable. Section III discusses the overall offered
simulation functionality, and its integration into simulation
models, also for the sake of portability. Finally, section IV
examines three practical V-REP simulation models and their
implementation, as an illustration of this paper’s content.

Figure 1. An example V-REP simulation scene showing the diversity of

robot types that may be simulated simultaneously

II. SIMULATION CONTROLLERS

If one wants to build complex simulation scenarios, then

there is almost no escape from a distributed control

framework. It simplifies the task by partitioning control

entities, it speeds-up simulation by distributing the CPU load

over several cores or several machines, and it allows a

CoppeliaSim (formerly V-REP): a Versatile and Scalable Robot

Simulation Framework

Eric Rohmer, Surya P. N. Singh and Marc Freese1

mailto:marc@coppeliarobotics.com

simulation model be controlled by native code execution.

There are however simulation requirements that should not

be forgotten in pursuit of that goal.

One of the most important and often neglected aspect is

the flexibility, portability and scalability of the simulation

model: how easy is it to adjust its control code(s)? How

many files have to be distributed in order to run the same

simulation model on another machine? Will it require

recompilation on other platforms? How many versions of the

same controller are in circulation? Can various versions

operate side-by-side? Can a simulation model easily be

instantiated several times, without losing functionality?

Other simulation control requirements are linked to the

simulation loop. Some elements, especially the low-level

controls such as real-time motion level controllers, require

synchronization with the simulation loop. (i.e. executed at

the same moment at each simulation pass).

The importance of providing synchronous/asynchronous,

external/embedded, native/non-native distributed control

techniques in robotics simulations is discussed hereafter.

A. Overview of Common Techniques

The execution of the control code of a simulation or a
simulation model is handled using the following three
techniques:

• The control code is executed on another machine.
This could represent a distinct machine or a robot,
connected to the simulator machine via a specific
network (e.g. socket, serial port, etc.). The main
advantage of this approach is the originality of the
controller (the control code can be native and running
on the original hardware). Another advantage is the
reduced computing load on the simulation machine.
On the other hand, this approach imposes serious
limitations in regards to synchronization with the
simulation loop, and the communication delay/lag
dictated by the network.

• The control code is executed on the same machine,
but in another process (or another thread) than
the simulation loop. Here also, we can benefit from
a reduced, or rather balanced load on the CPU cores,
but this comes accompanied with a lack of
synchronization with the simulation loop. And most
of the time, it comes in pair with a communication
lag or thread switching delay (many resources
require locking before access, or some algorithms
aren't reentrant). This control technique is often
implemented via external executables or plug-ins
loaded by the simulator.

• The control code is executed on the same machine
and in the same thread as the simulation loop. The
main advantage of this approach is the inherent
synchronization with the simulation loop, and the
absence of any execution, communication or thread
switching lag or delay. This however is only made
possible with an increased load on the simulation
loop CPU core. This control technique is often
implemented via plug-ins loaded by the simulator.

The most common implementations of the above
techniques (i.e., using external executables or plug-ins) have
as a direct consequence poor portability and poor scaling of
simulation models: indeed, since the control code is not
attached to its respective simulation model, it will have to be
distributed/compiled/installed separately. This increases
compatibility problems across platforms, as well as
conflict/dependency issues with other libraries. Flexibility is
also reduced, since one would have to recompile and reload
an executable/plug-in for each small code modification.
Model duplication, as in a multi-robot simulation scenario,
will have to be supported via hard-wired mechanisms that
launch new control instances for each simulation model
instance.

B. V-REP Implementation

V-REP allows the user to choose among various
programming techniques simultaneously (Table 1) and even
symbiotically (Fig. 2):

• Embedded scripts. This represents the most
powerful and distinctive feature of V-REP. The main
simulation loop is a simple Lua [5] script (called
“main script”), part of a given simulation scene, that
handles general functionality (e.g. it will call distinct
functions to handle kinematics or dynamics, for
instance). The main script is also in charge of calling
child scripts in a cascaded way (with respect to the
scene hierarchy). A child script, unlike the main
script, is attached to a specific object in the
simulation scene, and handles a particular part of the
simulation. It is an integral part of its scene object,
and will be duplicated and serialized, together with it.
As such, it represents a perfectly portable and
scalable control element: there is one single file
containing the model definition together with its
control or functionality, there is no compatibility
issue across platforms, no need for explicit
compilation, no conflict among several versions of
the same model, model instantiation is implicit, etc.
Child scripts can be executed in a threaded and non-
threaded fashion. The threaded version of child
scripts still keeps the advantages of the technique
described in point 3 of section II, A: indeed, V-
REP’s thread scheduler handles threads in a way that
makes them behave and appear as coroutines, which
allow to precisely control the time at which the
thread execution is switched back and forth,
effectively allowing for an excellent synchronization
with the main script or other child scripts.
Additionally, each thread can programmatically
request being set into a free-running mode (i.e.
allowing them to temporarily behave as real threads).
Embedded scripts can also be seen as a “glue
component”, that binds the various supported
programming techniques around V-REP: child
scripts can register ROS publishers/subscribers, they
can open and handle communication lines (e.g.
socket or serial port), launch executables,
load/unload plug-ins, or start remote API server
services (see point 4 hereafter). Embedded scripts
include also callback scripts, used as low-level

customized joint controllers for instance. The
functionality of embedded scripts can be extended by
the user via two mechanisms: with Lua extension
libraries, or with custom Lua functions registered
through a plug-in.

• Add-ons. In a similar way as embedded scripts, add-
on are supported in V-REP via Lua scripts. They can
be used as stand-alone functions (convenient for
writing importers/exporters), or as regularly executed
code (convenient as a lightweight simulator
customization method).

• Plug-ins. Plug-ins are used in V-REP as a convenient
simulator customization tool. They can register
custom Lua commands, allowing the execution of
fast callback functions from within an embedded
script. They can also extend the functionality of a
particular simulation model or object. Often they also
implement specific importers/exporters, or offer an
interface to a specific hardware. The remote API
interface as well as the ROS interface (see next
items) are implemented via plug-ins.

TABLE I. COMPARISON OF THE FIVE PROGRAMMING TECHNIQUES

SUPPORTED IN V-REP

• Remote API clients. The remote API interface in V-
REP allows interacting with V-REP or a simulation,
from an external entity via socket communication. It
is composed by remote API server services and
remote API clients. The client side can be embedded
as a small footprint code (C/C++, Python, Java,
Matlab & Urbi) in virtually any hardware including
real robots, and allows remote function calling, as
well as fast data streaming back and forth. On the
client side, functions are called almost as regular

functions, with two exceptions however: remote API
functions accept an additional argument which is the
operation mode, and return a same error code. The
operation mode allows calling functions as blocking
(will wait until the server replies), or non-blocking
(will read streamed commands from a buffer, or
start/stop a streaming service on the server side). The
ease of use of the remote API, its availability on all
platforms, and its small footprint, makes it an
interesting alternative to the ROS interface (see next
item).

• ROS [6] nodes. V-REP implements a ROS node
with a plug-in which allows ROS to call V-REP
commands via ROS services, or stream data via ROS
publishers/subscribers. Publishers/subscribers can be
enabled with a service call, and also directly enabled
from within V-REP, via an embedded script
command.

Figure 2. V-REP control architecture. Greyed items are control entities.
(1) C/C++ API calls, (2) cascaded child script execution, (3) Lua API calls,

(4) custom Lua API callbacks, (5) V-REP event callbacks, (6) remote API

function calls, (7) ROS transit, (8) custom communication (socket, serial,

pipes, etc.)

III. SIMULATION FUNCTIONALITY

V-REP is designed around a versatile architecture. There
is no main or central functionality in V-REP. Rather, V-REP
possesses various relatively independent functionalities, that
can be enabled or disabled as required, also on a model-base.

Imagine a simulation scenario where an industrial robot
has to pick-up boxes and move them to another location; V-
REP computes the dynamics for grasping and holding the
boxes and performs a kinematic simulation for the other parts
of the cycle when dynamic effects are negligible. This
approach makes it possible to calculate the industrial robot's

movement quickly and precisely, which would not be the
case had it been simulated entirely using complex dynamics
libraries. This type of hybrid simulation is justified in this
situation, if the robot is stiff and fixed and not otherwise
influenced by its environment.

In addition to adaptively enabling various of its
functionalities in a selective manner, V-REP can also use
them in a symbiotic manner, having one cooperate with
another. In the case of a humanoid robot, for example, V-
REP can handle leg movements by (a) first calculating
inverse kinematics for each leg (i.e., from a desired foot
position and orientation, all leg joint positions are calculated);
and then (b) assigning the calculated joint positions to be
used as target joint positions by the dynamics module. This
allows specifying the humanoid motion in a very versatile
way, since each foot would simply have to be assigned to
follow a 6-dimensional path: the rest of calculations are
automatically taken care of.

Functionality is related to specific scene objects, or to
specific calculation modules, both of them are described
hereafter.

A. Scene Objects

A V-REP simulation scene, or simulation model contains
several scene objects or elemental objects that are assembled
in a tree-like hierarchy. The following scene objects are
supported in V-REP:

• Joints: joints are elements that link two or more
scene objects together with one to three degrees of
freedom (prismatic, revolute, screw-like, or
spherical). They can operate in various modes (e.g.
force/torque mode, inverse kinematics mode, etc.)

• Shapes: shapes are triangular meshes, used for rigid
body simulation and visualization. They can be
optimized for fast dynamic collision response
calculation, as a grouping of primitive or convex
shapes. Other scene objects or calculation modules
heavily rely on shapes for their calculations
(proximity sensors, the dynamics module, or the
mesh-mesh distance calculation module for
example).

• Proximity sensors (Fig. 3): they perform an exact
minimum distance calculation to the part of a shape
contained in a configurable detection volume [7], as
opposed to simply performing detection based on
rays. This results in a more continuous operation and
thus allows for more realistic simulation.

• Vision sensors: vision sensors allow to extract
complex image information from a simulation scene
(colors, object sizes, depth maps, etc.). A built-in
filtering and image processing function enables the
composition of blocks of filter elements. Vision
sensors make use of hardware acceleration for the
raw image acquisition (OpenGL).

• Force sensors: they represent rigid links between
shapes, that can record applied forces and torques,
and that can conditionally break apart when a given
threshold is overshot.

• Graphs: graphs can record a large variety of
predefined or custom data streams. Data streams can
then be displayed directly (time graph of a given data
type), or combined with each other to display X/Y
graphs, or 3D curves.

• Cameras: they allow scene visualization when
associated with a viewport.

• Lights: lights illuminate a scene or individual scene
objects, and directly influence cameras or vision
sensors.

• Paths: they allow complex movement definitions in
space (succession of freely combinable translations,
rotations and/or pauses), and are used for guiding a
welding robot's torch along a predefined trajectory,
or for allowing conveyor belt movements for
example.

• Dummies: a dummy is a reference frame, that can be
used for various tasks, and is mainly used in
conjunction with other scene objects, and as such,
can be seen as a “helper.”

• Mills: they represent customizable convex volumes
that can be used to simulate surface cutting
operations on shapes (e.g., milling, laser cutting,
etc.).

Figure 3. Proximity sensor in V-REP

A. Calculation Modules

Scene objects are rarely used on their own, they rather
operate on (or in conjunction with) other scene objects (e.g. a
proximity sensor will detect shapes). In addition, V-REP
offers several calculation modules that can directly operate
on one or several scene objects. Following are the main
calculation modules:

• Kinematics module: allows kinematics calculations
(forward/inverse) for any type of mechanism
(branched, closed, redundant, containing nested
loops, etc.). The module is based on calculation of
the damped least squares pseudoinverse [8]. It
supports conditional, damped/undamped, and
weighted resolution.

• Dynamics module: allows handling rigid body
dynamics calculation and interaction (collision

response, grasping, etc.) via the Bullet Physics
Library [9] and the Open Dynamics Engine [10].
Dynamics-based simulations still being in its infant
shoes and often based on approximations, it is
important to not only rely on one single physics
engine, in order to validate results. At the time of
writing, a third, high fidelity physics support via
Vortex Dynamics [11] is in preparation.

• Collision detection module: allows fast interference
checking between any shape or collection of shapes.
This module is fully independent from the collision
response calculation algorithm of the dynamics
module. It uses data structures based on a binary tree
of oriented bounding boxes [12] for accelerations.
Additional optimization is achieved with a temporal
coherency caching technique.

• Mesh-mesh distance calculation module: allows
fast minimum distance calculations between any
shape (convex, concave, open, closed, etc.) or
collection of shapes. The module uses the same data
structures as the collision detection module.
Additional optimization is also achieved with a
temporal coherency caching technique.

• Path/motion planning module: handles holonomic
path planning tasks and non-holonomic path
planning tasks (for car-like vehicles) via an approach
derived from the Rapidly-exploring Random Tree
(RRT) algorithm [13]. Path planning tasks of
kinematic chains are also supported.

For versatility the above modules are implemented in a
general way, without making any assumptions on the
underlying simulation scenes or models. The purpose of
having them integrated in V-REP, instead of relying on
external libraries is somewhat similar to the purpose of
having embedded scripts, as described in section II, B: a vast
majority of simulations or simulation models do not require
any specific or high-end tool. They instead require a good set
of basic tools. If those are integrated to the simulator, and
their task definitions directly attached to simulation models,
then models become extremely portable: distribution of a
simulation model to a different machine or platform is done
via a single model file; there is no need to distribute,
recompile, install or reload a plug-in. In a similar way, this
makes models very scalable too: duplicated models are
automatically functional, without the need to modify any
source code. The duplication process can even happen during
simulation.

The traditional approach of extending functionality via a
plug-in, in order to support a specific simulation model is of
course also supported in V-REP.

IV. A CASE STUDY

Sometimes there is no escape from using a controller that
is separate from its simulation entity, typically when dealing
with a robot’s main controller, that can take very complex
proportions. Or when the controller needs to run natively.
But other times, is it really necessary to implement a plug-in
for each small sensor, new feature or small function?

Following three examples illustrate nicely the versatility and
portability of simulation models offered in V-REP.

A. Simulation Model of a Laser Scanner

Fig. 4 shows a laser scanner simulation model in V-REP.
The model is composed by a body or casing, a revolute joint,
and a ray-type proximity sensor mounted on the joint. A non-
threaded child script is attached to the sensor casing, and is in
charge to move the joint by a given angle, read the proximity
sensor, generate a line primitive in the scene (and an
auxiliary point primitive where a detection occurred), then
move to the next angular position. Since the child script runs
non-threaded, it will have to process as many joint angle
positions as the joint would have moved within one
simulation step.

The model can be dragged and dropped into a scene, and
will be immediately operational during simulation. The
whole model fits into a single file directly usable on other
platforms too, and compatible with current as well as future
V-REP versions. The model can be duplicated as often as
required, and its control code modified at will.

Figure 4. Laser scanner and hexapod model in V-REP

In a similar way, other such models can easily be created,
be it a drawing pen, a paint nozzle, a gripper, a blob detection
camera, or a whole robot.

B. Simulation Model of a Parallel Manipulator

Fig. 5 shows a parallel manipulator model controlled in
forward kinematics from an external application that
connects via the remote API to it. In order to correctly handle
all the loop closure constraints, the model is handled via V-
REP’s kinematics module. Since all related kinematics task
definitions are attached to the model, this model is self-
contained too, and immediately duplicable and operational on
other platforms too. Even physical scaling of the model,
which is another feature that V-REP supports, will
automatically adjust all kinematic tasks (among others), and
keep kinematic resolution consistent - without the need to
adjust any code.

C. Simulation Model of a Smart Human

Fig. 6 illustrates a simulation model of a human,
performing path planning tasks between its current position
and a desired target position. While the path planning task in

itself is computed by V-REP’s path planning module, a child
script attached to the model will trigger path planning
calculations, actuate legs and arms, and correctly move the
model along the calculated path. Here also, the model is fully
self-contained and fully portable.

V. CONCLUSION

V-REP is introduced as a versatile and scalable simulation

framework. By offering a multitude of different

programming techniques for its controllers, and by allowing

to embed controllers and functionalities in simulation

models, it eases the programmers task and reduces the

deployment complexity for the users.

Figure 5. Delta Arm manipulator model in V-REP

Figure 6. Path planning human model in V-REP

Currently V-REP has grown to a robust and widely used

robot simulator and controller, present in the academic as

well as industrial field. It performs tasks ranging from

system verification, algorithm optimization, simulation of

complex assembly chains in factory automation applications,

to robot task planner and controller.

ACKNOWLEDGMENT

Eric Rohmer thanks the Sao Paulo Research Foundation

FAPESP for its financial support.

REFERENCES

[1] F. Kanehiro, H. Hirukawa, and S. Kajita, “Open HRP: Open

Architecture Humanoid Robotics Platform,” Int. J. of Robotics

Research, vol 23, pp. 155-165, 2004
[2] N. Koenig, and A. Howard, “Design and use paradigms for Gazebo,

an open-source multi-robot simulator,” in Proc of Int. Conf. on

Intelligent Robots and Systems, pp. 2149-2154, Sendai, Japan, Sept.-
Oct. 2004

[3] O. Michel, “Webots: professional mobile robot simulation,” Int. J.

Adv. Robot. Syst., vol. 1, pp. 39-42, 2004
[4] V-REP simulator : http://www.coppeliarobotics.com

[5] Lua: http://www.lua.org

[6] M. Quigley, B. Gerkeyy, K. Conleyy, J. Fausty, T. Footey, J. Leibsz,
E. Bergery, R. Wheelery, and A. Ng, “ROS: an open-source Robot

Operating System,” in Proc of IEEE Int. Conf. of Robotics and

Automation, Kobe, Japan, May 2009
[7] M. Freese, F. Ozaki, and N. Matsuhira, “Collision Detection, Distance

Calculation and Proximity Sensor Simulation using Oriented

Bounding Box Trees,” 4th International Conference on Advanced
Mechatronics, pp. 13-18, Asahikawa, Japan, Oct. 2004

[8] C. W. Wampler, “Manipulator Inverse Kinematic solutions based on

Vector Formulations and Damped Least Squares Methods,” in IEEE
Trans. Syst., Man, Cybern., vol. 16, pp. 93-101, 1986

[9] Bullet physics library : http://www.bulletphysics.org

[10] Open dynamics engine: http://www.ode.org
[11] Vortex Dynamics: http://www.vxsim.com

[12] S. Gottschalk, M. C. Lin, and D. Manocha, “OBB-tree : a hierarchical

structure for rapid interference detection,” ACM SIGGRAPH, pp. 171-
180, New Orleans, USA, Oct. 1996

[13] J. J. Kuffner Jr., “RRT-Connect: an Efficient Approach to Single-

Query Path Planning,” in Proc of IEEE Int. Conf. of Robotics and
Automation, San Fransisco, USA, Apr. 2000

http://www.ode.org/
http://www.vxsim.com/

